Feed for tag: schnorr-signatures
An Overview of the Upcoming Multisignature Standard by Andrew Poelstra

ECDSA has been the preferred signature algorithm for most blockchain networks for verifying ownership and transfer of assets on the networks. However, this complex scheme that has been used in Bitcoin since 2008 started to show its limits. For example difficulties in producing multisignatures and added complexity in second layer Bitcoin networks like Lightning and crhoss-chain atomic swaps. Last year, a proposal called MuSig, or MultiSignature Scheme, was made. It offers many improvements over ECDSA and is probably one the most important cryptographic improvements to Bitcoin that would help increase privacy and efficiency in transactions.

Andrew Poelstra, one of the key researchers and co-author of the paper published a technical overview on this upcoming cryptographic scheme and its applications.

BIP Proposal for 64-byte Elliptic Curve Schnorr Signatures

One of the core components of Bitcoin is the Digital signature algorithms, it is used in making public keys out of private keys, signing transactions and in multisig transactions. Bitcoin so far has been using Elliptic Curve Digital Signature Algorithm ECDSA, for the past few months developers in the Bitcoin community have been talking about changing this algorithm into another one called Schnorr Signatures.

Schnorr is another signing algorithm that bring multiple benefits to the table. A new BIP was recently submitted by Peter Wuille about the changes that should happen in the future to Bitcoin’s signing algorithm with all the bells and whistles it should bring. The security of Schnorr is easily provable given a certain assumption, this is not the case for ECDSA.

Simple Schnorr Multi Signatures With Applications to Bitcoin

Blockstream announced on their blog a paper they published, introducing MuSig a multi-signature scheme based on Schnorr signatures.

While this work is a result of our research into Schnorr signatures for Bitcoin, MuSig is a cryptographic construction that may be useful for other applications. The paper and this post primarily discuss the cryptographic properties of MuSig, and aren’t directly a proposal for Bitcoin.